On L Modulus of Continuity of Brownian Local times and Riesz Potentials

نویسندگان

  • AURÉLIEN DEYA
  • SAMY TINDEL
  • S. TINDEL
چکیده

Abstract. This article is concerned with modulus of continuity of Brownian local times. Specifically, we focus on 3 closely related problems: (a) Limit theorem for a Brownian modulus of continuity involving Riesz potentials, where the limit law is an intricate Gaussian mixture. (b) Central limit theorems for the projections of L modulus of continuity for a 1-dimensional Brownian motion. (c) Extension of the second result to a 2-dimensional Brownian motion. Our proofs rely on a combination of stochastic calculus and Malliavin calculus tools, plus a thorough analysis of singular integrals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On L2 Modulus of Continuity of Brownian Local times and Riesz Potentials by Aurélien Deya,

This article is concerned with modulus of continuity of Brownian local times. Specifically, we focus on three closely related problems: (a) Limit theorem for a Brownian modulus of continuity involving Riesz potentials, where the limit law is an intricate Gaussian mixture. (b) Central limit theorems for the projections of L2 modulus of continuity for a one-dimensional Brownian motion. (c) Extens...

متن کامل

Stochastic integral representation of the L modulus of Brownian local time and a central limit theorem

The purpose of this note is to prove a central limit theorem for the L -modulus of continuity of the Brownian local time obtained in [2], using techniques of stochastic analysis. The main ingredients of the proof are an asymptotic version of Knight’s theorem and the Clark-Ocone formula for the L-modulus of the Brownian local time.

متن کامل

A Clt for the L2 Modulus of Continuity of Brownian Local Time1 By

Let {L x t ; (x, t) ∈ R 1 × R 1 + } denote the local time of Brownian motion, and α t := ∞ −∞ (L x t) 2 dx. Let η = N(0, 1) be independent of α t. For each fixed t, ∞ −∞ (L x+h t − L x t) 2 dx − 4ht h 3/2 L → 64 3 1/2 √ α t η as h → 0. Equivalently, ∞ −∞ (L x+1 t − L x t) 2 dx − 4t t 3/4 L → 64 3 1/2 √ α 1 η as t → ∞. 1. Introduction. In [10] almost sure limits are obtained for the L p moduli o...

متن کامل

A CLT for the L modulus of continuity of Brownian local time

Let {Lt ; (x, t) ∈ R1 ×R1 +} denote the local time of Brownian motion and αt := ∫ ∞ −∞ (Lt ) 2 dx. Let η = N(0, 1) be independent of αt. For each fixed t ∫∞ −∞(L x+h t − Lt )2 dx− 4ht h3/2 L → ( 64 3 )1/2 √ αt η, as h → 0. Equivalently ∫∞ −∞(L x+1 t − Lt )2 dx− 4t t3/4 L → ( 64 3 )1/2 √ α1 η, as t → ∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013